Github的markdown解析是通过SunDown库实现的。这个库的宗旨就是"Standards compliant, fast, secure markdown processing library in C"。
设线段 $ AB $ 长度为 $ a $ ,易得:
$ AC = \sqrt{2} $ , $ BM = \frac{\sqrt{5}}{3}a $ , $ DM = BD - BM = 5 - \frac{\sqrt{5}}{3}a $ , $ \sin{\angle{ABD}} = \frac{\sqrt{5}}{5} $
观察并计算得:
$\sin{\angle{AMD}} = \sin{\angle{BMC}} = \sin{(\angle{BAC} + \angle{ABD})} = \sin{\angle{ABD}}\sin{\angle{BAC}} + \cos{\angle{ABD}}\cos{\angle{BAC}}$
$ = \frac{\sqrt{2}}{2}(\frac{\sqrt{5}}{5} + \frac{2\sqrt{5}}{5})$
$ = \frac{3\sqrt{10}}{10}$
在$ \bigtriangleup{ACD}$ 作 $AC$ 边的高,长度为 $h$ ,则:
$ h = DM\sin{\angle{AMD}} = \frac{3\sqrt{10}}{10}(5 - \frac{\sqrt{5}}{3}a)$
由此可得:
$S_{ \bigtriangleup{ACD}} = \frac{AC \cdot h}{2} = \frac{1}{2}\cdot\sqrt{2}a\cdot\frac{3\sqrt{10}}{10}(5 - \frac{\sqrt{5}}{3}a)$
$= \frac{9}{10} \times \frac{\sqrt{5}}{3}a(5 -\frac{\sqrt{5}}{3}a)$
由算术-几何平均值不等式可得:
$S_{ \bigtriangleup{ACD}} \leq \frac{9}{10} \times \frac{(\frac{\sqrt{5}}{3}a + 5 - \frac{\sqrt{5}}{3}a)^{2}}{4} = \frac{45}{8}$
(当且仅当 $\frac{\sqrt{5}}{3}a = 5 - \frac{\sqrt{5}}{3}a$ ,即 $ a = \frac{3\sqrt{5}}{2}$ 时取相等)
综上,当 $AB = \frac{3\sqrt{5}}{2}$ 时, $S_{ \bigtriangleup{ACD}}$ 面积最大为 $\frac{45}{8}$